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ABSTRACT

We prove that solutions by direct regularization of linear systems are equiv-
alent to truncated iterations of certain type of iterative methods. Our proofs
extend previous results of H. E. Fleming to the rank-deficient case. We give
a unified approach that includes the undetermined and overdetermined pro-
blems.

1. INTRODUCTION

Many inverse problems begin with a Fredholm integral equation of the
first kind. After discretization, the problem reduces to solving a system of
linear-algebraic equations of the form

Az =b, (1.1)

where A is a real m x n matrix, b is the m-vector of observations, and z is
an n-vector to be determined. Unfortunately (1.1) is usually very ill posed,
and small perturbations in b generate large errors in x, even if we consider
minimum-norm solutions in the least-squares sense. The standard way to
obtain stable solutions is to modify the problem, replacing (1.1) with the
Tikhonov regularization [1, 6, 10]. That is, the solution is obtained by
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minimizing the functional
Fo(z) = ||Az - bl[* + al|L(z - 2%)||*. (1.2)

The second term in (1.2) represents some o priori information about the
problem. L is usually a derivative operator imposing some smoothing con-
straints on the solution, « is a positive regularization parameter controlling
the amount of smoothing, and z° is an estimate of x. Here, || - || denotes
the square norm in R”™.

Another way to solve (1.1) is to apply an iterative method to the normal
equations

A'Ax = A" (1.3)

A typical algorithm for solving (1.3) is the generalized Landweber-Fridman
iteration (8, 9], which is given by

ot = 2% 4 DAYb — A2F),  k=0,1,2,..., (1.4)

where D = F(A*A) and F is a polynomial or rational function. At the
beginning of the process, the accuracy of the iterates improves, but after
some time a deteriorating effect shows up due to ill-conditioning. A stable
solution can be found using a stopping rule to choose an iterate £* before
this effect shows up. This procedure, known as truncated iteration, estab-
lishes a balance between accuracy and smoothing requirements similar to
those represented by the first and second terms in (1.2).

Recently [4], Fleming established an equivalence between the two types
of methods if A has full rank. In [4], it is proven that every direct regular-
ization method of a very general type for the solution of (1.1} is equivalent
to a truncated iterative method and vice versa. This is done by considering
separately the overdetermined {n < m) and the underdetermined (n > m)
cases. In this paper we extend these results to incomplete-rank matrices.
We use a formula for general iterative methods that allows a simpler and
unified proof. Moreover, our proof is valid for methods more general than
(1.4).

It is known that both methods, Tikhonov regularization and truncated
iteration, belong to the class of spectral approrimation schemes, that is, the
regularized approximations can be expanded using the same eigenfunction
set, differing only in the choice of the so-called filter functions (see, e.g., [6,
7, 11]). In this paper and Fleming’s [4], it is shown that the latter form is
also a particular case of the former.

In the next section we give preliminary results for general linear iterative
methods that include the formula just mentioned. Section 3 contains our
main equivalence results.
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2. PRELIMINARY RESULTS
We consider iterative methods of the form
ot = G* 4§, (2.1)

where G is an n x n matrix and f is a vector in R™. It is clear that if {z*}
converges to z*, then this limit point solves the system

(I-G)z=f. (2.2)

A matrix G is said to be convergent if lim;_,oo G* exists. This limit
exists if and only if the following conditions are verified (see [12]):

(a) The spectral radius of G is less than or equal to one.

(b) If X is an eigenvalue of G such that |A] = 1, then A = 1 and all the
elementary divisors that correspond to A are linear, i.e., A has no
principal vectors.

The range and the null space of a matrix A will be denoted by R(A) and
N (A), respectively. If G is a convergent matrix, then ind(J —G) < 1, where
ind(A) stands for the index of A (i.e., the smallest nonnegative integer g
such that R(A%) = R(A9*!) holds; cf. [2, Definition 7.2.1]). If ind(A) = g,
then R" = N (A?)@R(A?) (cf. {2, Lemma 7.2.1]). Thus, if G is a convergent
matrix, then R* = N(I - G)d R(I - G).

The following theorem describes the iterates generated by (2.1).

THEOREM 2.1. Let G be an n X n convergent matriz. Then
R =N(I-G)aRI-G), (2.3)
and the following expression holds:
¥ =2l + kfi + G*[2) — (I - G2) 7 fo] + (I - G2)71 fa, (2.4)

where f1,29 € N(I —G) and fa,zo € R(I — G) are such that f = f| + fo,
t® = 29 + 29, and G2 = Glr(-c).

Proof. Using (2.1), z* can be written as

=G "+ G'f. (2.5)
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Let W be the subspace generated by the principal vector and eigenvec-
tors associated with the eigenvalues of G different from one. Clearly

R*=N({I-G)aW. (2.6)

Let 9, f1 € N(I — G) and x,,f, € W be such that z° = 29 + 23 and
f = f1 + f2. Defining G2 = G|w and applying (2.5), we obtain

k—1
o =1+ kfi +Gia) + Y Gifa. (2.7)
=0

Since G, doesn't have one as eigenvalue and W is (I — G)-invariant, I — G,
has an inverse and

k—1
SG=(I-GH(I-Gy) (2.8)
=0
Therefore, using (2.7) and (2.8), we get that
of =2 4 kfi + GE[2 — (1 - Go) o] + (I - Go) "M o (2.9)

It remains to be proved that W = R(I — G). To do this, we will use
Equation (2.9). If f € W, then f; = 0 and the sequence {z*} is convergent;
therefore (2.2) is solvable and f € R(I — G) (this is a consequence of (2.9)
and the fact that the eigenvalues of G2 are less than one in modulus, but
can be deduced also from [3]). On the other hand, if f € R(I —G), then we
can take z° = z*, a solution of (2.2). The resulting sequence is convergent
because G is a convergent matrix and, by Equation (2.9), f1 must be zero;
so feW. R

We conclude that G2 = G2 = G|g(1-¢), and the result follows. ]

Given the Jordan canonical form of a matrix A,

Jo O
0 4

A=P p!

(all Jordan blocks belonging to the eigenvalue A = 0 of A are collected in
Jo), the Drazin inverse AP of A is
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(see e.g. 2, Definitions 7.2.2, 7.2.3 and Theorem 7.2.1]). Thus, the Equa-
tion (2.4) can be rewritten as

=2y +kfi +G* [z~ (I - G)Pf] + (I - G)Pf.
Consider now the regularized problem
minimize ||Az — b||% + ||z — a,HZQ, (2.10)

where P € R™*™ and @ € R™*™ are symmetric positive matrices, a is a
vector, in R™ and the norms are defined by

l|2]|% = 2P~ 12 (2.11)

(the same for Q). Let us also consider a convergent iterative method of the
form

o+l = g% L MATP(b — Azh), (2.12)

where M is a nonsingular matrix. Using the notation of the previous sec-
tion,

G=1-MAPA

LEMMA 2.2.  The solution z* of the problem (2.10) always exists and
can be written as

r* = (I+ QAP 'A) Y a—-d) +d, (2.13)
where

d=(MA'P 'A);'MA'P~ ' and
(MA*P'A)y = MA'P™ Alg(parp—1.4)-

Proof. Tt is easy to see that
2t = (I + QAP A" (QA'Pb + a). (2.14)

By Theorem 2.1, (M A*P~1A), has an inverse, and by adding and sub-
tracting

I+ QAP Ay Y (MA'P LA MATP™ b
in (2.14) we obtain

z* = (I+ QAP A) Ha—d)+ (I + QA PP A) 1 (QA' P 'b+d). (2.15)
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The system
AP 1p = A'P 1 Ax (2.16)
has a solution. Applying M in both sides of (2.16), we deduce that
MA'P~'h € R(IMA'P1A).
Therefore,
MA'P'b= MA*P~'Ad (2.17)
Since M and Q are nonsingular, we can replace M by @ in (2.17), obtaining
QA'P7'b = (QA'PTIA)(MA'P AP MA'P1b. (2.18)
From (2.18) we get that
(I+ QAP A H QAP b +d) =d. (2.19)

The result follows from (2.15). L

3. EQUIVALENCE OF SOLUTIONS

We present in this section the main equivalence results of this paper.

THEOREM 3.1. Every regularized solution of the system (1.1) has an
equivalent truncaeted iterative solution of the form (2.12); i.e., given the
matrices P and Q in (2.10) and a positive integer ko, there ezrists a matriz
M such that z*° given by (2.12) solves (2.10).

Proof. Since @ and A*P~! A are symmetric and Q! is positive definite,
we can simultaneously diagonalize them. Thus, there exists a nonsingular
matrix X such that

XiQ X = diag<i, . l) (3.1)
q1 qn
and
XA PTYAX = diag(p1,...,Pn), (3.2)

with ¢; > 0 and p; >0 fori = 1,...,n. (See [5, Chapter 8].) Consequently

XT1QA'PTAX = X71QX Y XA P~ AX) = diag(piq1, - - - » Pnln)-
(3.3)
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Given a truncation index ko, let

M = X diag(\,. .., ) X* = XDX?, (3.4)

where

N = (1/p)[1 — 1+ pige)"V*0] if pi #0,
’ 1 otherwise.

Using (3.3), (3.4), and (3.5) we get that
(I - MA*P~1A)k — (I — XDX'A' P71 Ao

={X(I - DX!A' P 1AX)X " '}F
= {X diag(1 — \ips) X 1}F0
= X diag (1 — Api)fo X1
= X diag(1 + pyq:) "' X!
= (I4+QA'P1A)™ T (3.6)

Now

I - MA'P™ A = X diag (1 + pigs) /¥ X1

therefore, M given by (3.4) defines a method (2.12) that is convergent.

It remains to be proved that zF0 = z* is the solution of the problem
(2.10). By Lemma 2.2, the expression (2.13) is valid. If we set 2% = a and
we apply (3.6), it follows that

" =T+ QAP TA) 1 + (I - MA'PT'A)*(z) —d) +d, (3.7

where z¥ € N(MA'P~14) and z3 € R(MA*P~!A) are such that «° =
79 + zJ. But

(I+QA'P 1A 129 =17, (3.8)
because z0 € N (MAtP~*A) = N(A). Thus, by Theorem 2.1, z* = z*. B
We now state and prove the converse of Theorem 3.1.

THEOREM 3.2. Every truncated-iterative solution of the form (2.12),
where M is a symmetric positive definite matriz, is the solution of a reg-
ularized problem of the form (2.10); i.e., for every k and matrices M and
P, there ezists a matriz Q such that z* in (2.12) solves (2.10).

Proof. Since M~' and A*P~'A are symmetric and M ™! is positive
definite, we can diagonalize them simultaneoulsy. Thus, there exists a
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nonsingular matrix Y such that

1
YfM-lyzdiag(i,...,—), (3.9)
mi my
and
Yi(A'P~1A)Y = diag(as, ..., an), (3.10)
witha; >0and m; >0fori=1,...,n.
Define
Q =Y diag(u)Y?, (3.11)
where
_ {(1/(11-)[(1 —am) ™ —1] i a0, (312)
1, otherwise.
Using (3.9), (3.10), (3.11), and (3.12), we get that
(I+QA'P71A)"! = Y diag (1 + pia;) 1Y ~!
=Y diag (1 — a;m;)* Y !
= (I - MA*P1A)*. (3.13)

The method (2.12) is convergent, so we must have 1 - a;m; < 1, if a; # 0,
for i =1,...,n, implying that u; > 0. Hence, @ is positive definite. We
can apply Theorem 2.1 and (3.13) to obtain

8 =2} + (I + QAP A) (23 — d) + 4, (3.14)
But z% € A(4), then

2 = (I + QAP 1A) 1af. (3.15)

If we set @ = z°, and using Lemma 2.2, we conclude that =¥ = z*. [ ]
ExXAMPLE. Consider the Landweber method [8]

2 =2k L AN - AZF), Kk =0,1,2,..., (3.16)

where w is a positive real number. If O is an orthogonal matrix such that
OA'AO = diag(ay,. .., an), (3.17)
then, using the proof of Theorem 3.2, =¥ is the solution of the problem

minimize ||Az — b[|3 + ||D~/20z||2, (3.18)
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where
D = diag(p;) (3.19)

and

. (3.20)
1, otherwise.

(1/a)[(1 —wa;)"% ~1] if a; #0,
Hi =
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